With conspecifics like these, who needs predators?

Update, 19 July 2011: More than a year after this study was published, some important objections have been made about very basic assumptions of the experiment presented. Also, I’ve fixed the first link the original article.

ResearchBlogging.orgThere’s something special about islands. After moving to islands, plants adapted to rocky outcrops evolve to grow in rainforests and alpine meadows, and finches evolve to behave like woodpeckers. But why? Islands contain new food sources and habitats, they often lack predators, and they can provide more geographic barriers to generate reproductive isolation—to name just a few possibilities. A newly published ecological experiment now provides evidence that one group of island lizards diversfied because islands are crowded [$a].

There’s something about islands. Photo by Storm Crypt.

Diversification on islands may be related to density compensation, the frequently-observed principle that islands often support fewer species than mainland sites of the same area, but contain more individuals of each species—that is, island populations are usually at higher density than their mainland counterparts [$a]. Density compensation seems to arise both from lack of predators on islands, and because island populations have fewer competitor species. This may mean that, compared to mainland populations, island populations are under weaker natural selection from other species, and stronger selection from competition with other members of their own species.

A somewhat strained analogy

How could that difference in selective regimes spur diversification? Imagine two towns, one surrounded by other settlements, the other on its own in the middle of the wilderness. The town in densely-populated country is probably best off doing one thing well—to have, say, most of its inhabitants working at a factory making (to pick a product at random) sausages for trade with other towns. People living in this first town might want to start up a factory making a different product, but odds are good there’s strong competition from another town nearby, so it’s hard to get the new business off the ground—it’s really just better to invest in the existing factory.

On the other hand, the inhabitants of the town in a lightly-populated district might need more products made locally because it costs too much to import. A businesswoman in the isolated town is probably better off starting a factory that makes a product no-one is making locally—if sausages are already accounted for, there might be a market for (to pick another product at random) pharmeceuticals.

In this scenario, competition from outside exerts economic pressure to do one thing well; competition from within exerts pressure to do many different things. Both kinds of competition are present in each town, but outside competition is stronger in the town surrounded by other towns, and competition from within is stronger in the isolated town.

Anole vs. anole

The density compensation hypothesis proposes that something similar happens on islands. With fewer predators or competitor species, island populations are able to maintain higher densities of individuals. That increased density means that competition within the species becomse stronger, creating natural selection that favors individuals who can use new food resources or live in new habitats.

Density compensation seems likely to be responsible for the diversification of anole lizards on the islands of the Caribbean. In the course of colonizing Caribbean islands, anoles have repeatedly evolved into a handful of different niche specialists [PDF] called “ecomorphs,” ranging from “giant” species that live high in the forest canopy, to small species that can navigate and perch on fine twigs, and intermediate species that live on and around tree trunks. Anoles on the mainland of Central America are no less diverse than their Caribbean congeners, but they haven’t evolved mini-radiations of replicated ecomorphs—and their population densities are much lower than those of the island species.

Anolis sagrei, the brown anole. Photo from WikiMedia Commons.

If release from predators, and the ensuing increase in population density, drove the diversification of island anoles, then we might expect that natural selection from predators has less effect on the traits that differentiate the anole ecomorphs than natural selection from other anoles. Testing that hypothesis experimentally is ambitious to say the least, but that’s what the new study attempts to do.

The authors, Calsbeek and Cox, identified six very small, similar islands off the coast of the Bahamian island Greater Exuma, and introduced varying numbers of brown anoles (Anolis sagrei) onto them at the beginning of the summer. The islands were small enough that Calsbeek and Cox could selectively exclude birds by enclosing the islands in netting; by introducing predatory snakes onto some islands, they could then generate three selective regimes: no predators, birds only, and birds plus snakes. Before introducing them into these experimental setups, the authors measured each anole’s body size, hind-leg length, and running stamina, and marked each lizard so they could estimate selection acting on the three traits based on which lizards survived to be recaptured at the end of the season. (The experiments were carried out over two years, with both years’ results compiled at the end.)

The results suggest that competition makes a bigger difference for the experimental populations than predation—while the strength of natural selection acting on all three traits increased with the anoles’ population density, it didn’t change when predators were allowed access to the islands. If the levels of predation simulated on the micro-islands accurately reflect what anoles experience throughout the Caribbean, then the result is, I’d say, pretty good evidence that competition is the most important evolutionary force acting on island anoles.

I should note that, although Calsbeek and Cox’s raw result is suggestive, it’s not clear that their sample size is big enough to support all the statistical analyses they perform on the data. On balance, I think they deserve a lot of credit just for tackling this question experimentally.

References

Calsbeek, R., & Cox, R. (2010). Experimentally assessing the relative importance of predation and competition as agents of selection. Nature, 465 (7298), 613-6 DOI: 10.1038/nature09020

Givnish, T., Millam, K., Mast, A., Paterson, T., Theim, T., Hipp, A., Henss, J., Smith, J., Wood, K., & Sytsma, K. (2009). Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proceedings of the Royal Society B: Biological Sciences, 276 (1656), 407-16 DOI: 10.1098/rspb.2008.1204

Losos, J. (1990). Ecomorphology, performance capability, and scaling of West Indian Anolis lizards: an evolutionary analysis. Ecological Monographs, 60 (3), 369-88 DOI: 10.2307/1943062

MacArthur, R., Diamond, J., & Karr, J. (1972). Density compensation in island faunas. Ecology, 53 (2) DOI: 10.2307/1934090

Pinto, G., Mahler, D., Harmon, L., & Losos, J. (2008). Testing the island effect in adaptive radiation: rates and patterns of morphological diversification in Caribbean and mainland Anolis lizards. Proceedings of the Royal Society B: Biological Sciences, 275 (1652), 2749-57 DOI: 10.1098/rspb.2008.0686

2 thoughts on “With conspecifics like these, who needs predators?

  1. Hey! I really liked your post. I also commend the authors for their attempt an actual experiment – although I certainly have mixed feelings about releasing predators onto an island, no matter how short the intended time.

    I wonder how this effect is seen in human-mediated predator loss scenarios – e.g. overfishing top predators and causing “mesopredator release” through a trophic cascade. By selectively causing larger predators to go extinct locally, are we ourselves enforcing density compensation?

    I’m hosting the Carnival of Evolution this month and suggest you submit this post to it. Would love to include it in the carnival. You can do it here, if you so choose: http://blogcarnival.com/bc/submit_5028.html

    Thanks,
    Hannah Waters

  2. Hey, thanks, Hannah! That connection to mesopredator release isn’t something I’d thought about, but of course it’s a very similar process. Density compensation has occasionally been linked to introduced species that go invasive, too — take them to a predator-free habitat, and they get out of control.

    I’ve just submitted the post to CoE — I have really got to stop letting good carnivals slip by without participating.

Comments are closed.