Pollination before flowers

ResearchBlogging.orgWhich came first, the pollinator or the pollinated? An article in this week’s Science suggests that a diverse group of insects may have been drinking nectar and pollinating plants millions of years before the appearance of modern flowering plants [$-a].



Panorpis communis, a modern scorpionfly species, and a sketch of ancient, pollinating scorpionflies. Photo by JR Guillaumin; sketch from Ollerton and Coulthard (2009).

Prior to the origins of modern flowering plants, or angiosperms, in the early-middle Cretaceous period, most of the diversity of land plants were gymnosperms. These plants are characterized by “naked seeds” — reproductive organs exposed to the air, where the wind can catch pollen and carry it from one plant to fertilize the ovules of another. In a world dominated by gymnosperms, the thinking used to be, animal pollinators were mostly unnecessary.

The new paper by Ren et al. challenges this idea with the description of a set of fossilized scorpionflies, all of which have strikingly long probosces that are clearly suited to sucking up liquid. The earliest of these fossils are from the Jurassic, tens of millions of years before the flowering plants began to diversify. In modern insects, sucking mouthparts like the ones described are associated with two kinds of feeding: drinking pollen, and drinking blood. To determine which was most likely in this case, Ren et al. performed energy-dispersive spectroscopy on the best-preserved fossil, and found no sign of the elevated levels of iron in the proboscis that would result from the residue of blood meals. This suggests that the scorpionflies were drinking nectar, or something like it.

Nectar has one major function in plants: to attract insects. Ant-protected plants reward their ants with nectar, and flowering plants use nectar to lure animal pollinators close enough to pick up or drop off pollen. If these ancient scorpionflies were, in fact, living on nectar, Ren et al. reason they were probably pollinating contemporary plants, which were all gymnosperms. The authors identify a diverse list of candidate host plants, including seed ferns and a relative of the modern ginkgo, whose reproductive structures were (1) too well-sheltered for efficient wind pollination or (2) included tubular structures similar to those that modern plants use to guide nectar-feeding pollinators. Finally, the authors point out, many modern gymnosperms produce “ovular secretions” that are very similar to the nectar produced by angiosperms.

As a neontologist, I’m often amazed how much can be told from million-years-old fossils — who knew there was a way to test for residual blood in a fossilized proboscis? At the same time, Ren et al. connect some mighty scattered dots to build their hypothesis. The real clincher is that it seems mighty unlikely that animal pollination would be rare in a world that already has both flying insects and pollen-producing plants. Animal pollination is much more efficient than wind pollination, and if there’s one constant in evolutionary history, it’s that living things rarely miss an opportunity like that.

References

Ollerton, J., & Coulthard, E. (2009). Evolution of animal pollination. Science, 326 (5954), 808-9 DOI: 10.1126/science.1181154

Ren, D., Labandeira, C., Santiago-Blay, J., Rasnitsyn, A., Shih, C., Bashkuev, A., Logan, M., Hotton, C., & Dilcher, D. (2009). A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science, 326 (5954), 840-7 DOI: 10.1126/science.1178338

Share

Correlation and causation: Why are there so many flowering plants?

ResearchBlogging.orgAmong the flowering plants, groups with flowers adapted to a narrower range of pollinators — the more specialized ones, like orchids or mintstend to contain more species. Why? The classic hypothesis is that coevolution between plants and their pollinators leads to more pollinator-specialized plants, which are then more likely to become reproductively isolated, and eventually form separate species. However, I’ve just finished reading a review article that suggests an interesting alternative: that angiosperms may not be diverse because they’re specialized, but specialize because they’re diverse [$-a].

The review’s authors, Armbruster and Muchhala, first lay out a list of possible mechanisms connecting diversity and specialization. Three of them have specialization creating diversity, by (1) creating reproductive isolation, (2) enhancing isolation created by other forces, or (3) reducing extinction rates. Finally, there’s the possibility that diversity creates specialization, by (4) essentially forcing plants to divvy up the available pollinator community more and more finely.


Collinsia heterophylla, a
member of a plant genus
probably shaped by competition.

Photo by Ken-Ichi.

The first two mechanisms are, as far as I’m concerned, contained within the classic specialization-creates-diversity hypothesis classically advanced by Verne Grant, that increased floral specialization makes it easier to form new species [$-a]. The third is a bit odd — generally, ecologists think that increased specialization means an increased, not a decreased, risk of extinction [$-a]. It’s intuitive that if you rely on fewer pollinator species, you can afford to lose fewer of them, and you have fewer opportunities to colonize new sites; so on the one hand, you’re at greater risk of local extinction, and on the other, you have difficulty establishing new populations. However, as Armbruster and Muchhala point out, this process should make more-specialized plant groups less diverse, which is the opposite of what we see.

The fourth hypothesis, that competition for pollinators causes greater to create greater specialization, leads to predictions that nicely differentiate it from the classic hypothesis: that hybridization between related flowering plants should be rare, and that plants should rarely occur in the same community as their closest evolutionary relatives. The first is important because it gives a reason to specialize on one or a few available pollinators — if a plant can’t reproduce with nearby relatives, all the pollen it exchanges with them represents wasted effort, and may actually interfere with pollen transfer from members of its own species. The second is a consequence of that process; plants are most likely to be able to hybridize with their evolutionary sisters, so successful speciation will usually require geographic or ecological isolation.

The authors then evaluate the evidence for these predictions in four plant genera with which they have prior experience: Dalechampia, Collinsia (pictured above), Burmeistera, and Stylidium. For these four groups, they find good support for the diversity-causes-specialization hypothesis — few natural, or even artificial hybrids, and few co-occurring sister species. To some degree, then, the new hypothesis is an effect of a researcher’s favorite study systems influencing their perspective on the broader picture of evolution. Armbruster and Muchhala give the same treatment to orchids, and find that for the most diverse angiosperm family, natural hybrids and co-occuring sister species are not rare. This ambiguity makes the review more interesting — it overturns the causation commonly inferred from the correlation between diversity and specialization, but it doesn’t make the mistake of sweepingly assuming the opposite instead.

Correlation, and causation.
xkcd.

References

Armbruster, W., & Muchhala, N. (2008). Associations between floral specialization and species diversity: Cause, effect, or correlation? Evolutionary Ecology, 23 (1), 159-79 DOI: 10.1007/s10682-008-9259-z

V. Grant (1949). Pollination systems as isolating mechanisms in angiosperms. Evolution, 3, 82-97

Johnson, S.D., & Steiner, K.E. (2000). Generalization versus specialization in plant pollination systems Trends in Ecology & Evolution, 15 (4), 140-3 DOI: 10.1016/S0169-5347(99)01811-X

Sargent, R. (2004). Floral symmetry affects speciation rates in angiosperms Proc. R. Soc. B, 271 (1539), 603-608 DOI: 10.1098/rspb.2003.2644

Share

Seed dispersal by ants: A lousy way to travel, a good way to diversify

ResearchBlogging.orgNew in the always open-access PLoS One: turns out that a great way to make new species, if you’re a plant, is to have your seeds dispersed by ants. This is because ants aren’t very good at seed dispersal.

Seed dispersal by ants, or myrmecochory, works very much like dispersal by fruit-eating birds and mammals: ant-dispersed seeds typically have a fatty attachment, called an elaiosome, that looks tasty to ants. Ants collect elaiosome-bearing seeds, bring them back to their nest, pry off the tasty bit, and then discard the rest of the seed. This leaves the seed safely underground in an ant-midden, ready to germinate — a great way to dodge seed-eating critters and avoid competition from its parent plant and siblings [$-a].


Bloodroot seeds, with ant-attracting
elaisomes.
Photo by cotinis.

I didn’t learn about myrmecochory until after I’d finished undergrad — which is surprising, because it was going on under right my nose every time I went out into the Appalachian woods near campus. Lots of wildflowers [$-a] have ant-dispersed seeds, including bloodroot, touch-me-not, and good old trillium. It’s an extremely popular dispersal mechanism, having evolved independently multiple times on every continent except Antarctica. Really, me not knowing about myrmecochory is kind of like not knowing about fruit!

Ant dispersal is also associated with increased species diversity. In the new article, Lengyel et al. use a classic analysis method called sister group comparison to test the hypothesis that ant-dispersed plant groups contain more species than the most closely-related plant group. And they do, by a long way: on average, myrmecochorous groups contain twice as many species as their non-myrmecochorous sister groups. Why is this? As the authors conclude, it’s probably a side consequence of ant dispersal — ants don’t move seeds very far from where they collect them.

Recent evidence from genetic studies shows that limited seed dispersal in myrmecochory can lead to strong genetic structure within populations even at spatial scales as small as a few meters. The failure of myrmecochores to maintain gene flow across barriers may lead to reproductive isolation of sub-populations, which may facilitate speciation. [In-text references omitted.]

So myrmecochorous plants, like Appalachian salamanders [$-a] and tropical white-eyes [$-a], make lots of new species not because their unique characteristics give them some adaptive advantage (although, to be sure, there are advantages to ant dispersal), but because ants do a lousy job moving seeds between populations, leaving them free to follow their own evolutionary trajectories.

Lengyel et al. argue that myrmecochory is a key innovation, a trait that helps a group of organisms spread and diversify in the process evolutionary biologists call adaptive radiation. Based on their results, I have to agree — ant dispersal is strongly associated with evolutionary diversification. But the speciation that myrmecochory promotes is an accident, a side effect. We often think of key innovations promoting speciation by adaptive means, by allowing one group of species to outcompete others. Clearly, however, a key innovation can also be a trait that makes the accident of speciation a little more likely.

References

Beattie, A.J., & Culver, D.C. (1981). The guild of myrmecochores in the herbaceous flora of West Virginia forests. Ecology, 62, 107-15 DOI: http://www.jstor.org/pss/1936674

Giladi, I. (2006). Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory. Oikos, 112 (3), 481-92 DOI: 10.1111/j.0030-1299.2006.14258.x

Kozak, K., Weisrock, D., & Larson, A. (2006). Rapid lineage accumulation in a non-adaptive radiation: phylogenetic analysis of diversification rates in eastern North American woodland salamanders (Plethodontidae: Plethodon). Proc. R. Soc. B, 273 (1586), 539-46 DOI: 10.1098/rspb.2005.3326

Lengyel, S., Gove, A., Latimer, A., Majer, J., & Dunn, R. (2009). Ants sow the seeds of global diversification in flowering plants. PLoS ONE, 4 (5) DOI: 10.1371/journal.pone.0005480

Moyle, R., Filardi, C., Smith, C., & Diamond, J. (2009). Explosive Pleistocene diversification and hemispheric expansion of a “great speciator.” Proc. Nat. Acad. Sci. USA, 106 (6), 1863-8 DOI: 10.1073/pnas.0809861105

Share