I’m out of town at a conference this week (more on that at a later date), but it’s been a busy one for both blogging and academics. At the Molecular Ecologist, I’ve got a Q&A with Yannick Wurm, the lead author on a cool study that uses high-throughput sequencing data to demonstrate that one species of fire ants has a “social chromosome” which determines how many queens a single colony can support.
In particular this has been extensively studied in the red Solenopsis invicta fire ant: some colonies have up to hundreds of wingless queens, but other colonies contain strictly one single wingless queen. And this is stable: any additional queen you try to add to a single-queen colony is executed by the workers.
Then, at Nothing in Biology Makes Sense! I discuss a new study of local adaptation by a South African daisy, which fools bee flies into mating with its petals, the better to pick up and transport pollen.
What makes G. diffusa more interesting, to an evolutionary biologist, is that not all populations of the daisy practice this deception. The pattern of G. diffusa‘s petals varies across its range—and not all petal patterns prompt the pollinators to hump the flower.
And finally, the first paper from my postdoctoral work in the Tiffin lab is officially online at Systematic Biology. It’s a project in using a very large genetic dataset—tens of thousands of markers—to reconstruct the evolutionary history of the genus Medicago, which includes my current favorite plant. It’s attached to my very first Dryad data package, which provides all the original data underlying the paper. I’ll be writing about this work in more detail in the near future.◼