Seed dispersal by ants: A lousy way to travel, a good way to diversify

ResearchBlogging.orgNew in the always open-access PLoS One: turns out that a great way to make new species, if you’re a plant, is to have your seeds dispersed by ants. This is because ants aren’t very good at seed dispersal.

Seed dispersal by ants, or myrmecochory, works very much like dispersal by fruit-eating birds and mammals: ant-dispersed seeds typically have a fatty attachment, called an elaiosome, that looks tasty to ants. Ants collect elaiosome-bearing seeds, bring them back to their nest, pry off the tasty bit, and then discard the rest of the seed. This leaves the seed safely underground in an ant-midden, ready to germinate — a great way to dodge seed-eating critters and avoid competition from its parent plant and siblings [$-a].


Bloodroot seeds, with ant-attracting
elaisomes.
Photo by cotinis.

I didn’t learn about myrmecochory until after I’d finished undergrad — which is surprising, because it was going on under right my nose every time I went out into the Appalachian woods near campus. Lots of wildflowers [$-a] have ant-dispersed seeds, including bloodroot, touch-me-not, and good old trillium. It’s an extremely popular dispersal mechanism, having evolved independently multiple times on every continent except Antarctica. Really, me not knowing about myrmecochory is kind of like not knowing about fruit!

Ant dispersal is also associated with increased species diversity. In the new article, Lengyel et al. use a classic analysis method called sister group comparison to test the hypothesis that ant-dispersed plant groups contain more species than the most closely-related plant group. And they do, by a long way: on average, myrmecochorous groups contain twice as many species as their non-myrmecochorous sister groups. Why is this? As the authors conclude, it’s probably a side consequence of ant dispersal — ants don’t move seeds very far from where they collect them.

Recent evidence from genetic studies shows that limited seed dispersal in myrmecochory can lead to strong genetic structure within populations even at spatial scales as small as a few meters. The failure of myrmecochores to maintain gene flow across barriers may lead to reproductive isolation of sub-populations, which may facilitate speciation. [In-text references omitted.]

So myrmecochorous plants, like Appalachian salamanders [$-a] and tropical white-eyes [$-a], make lots of new species not because their unique characteristics give them some adaptive advantage (although, to be sure, there are advantages to ant dispersal), but because ants do a lousy job moving seeds between populations, leaving them free to follow their own evolutionary trajectories.

Lengyel et al. argue that myrmecochory is a key innovation, a trait that helps a group of organisms spread and diversify in the process evolutionary biologists call adaptive radiation. Based on their results, I have to agree — ant dispersal is strongly associated with evolutionary diversification. But the speciation that myrmecochory promotes is an accident, a side effect. We often think of key innovations promoting speciation by adaptive means, by allowing one group of species to outcompete others. Clearly, however, a key innovation can also be a trait that makes the accident of speciation a little more likely.

References

Beattie, A.J., & Culver, D.C. (1981). The guild of myrmecochores in the herbaceous flora of West Virginia forests. Ecology, 62, 107-15 DOI: http://www.jstor.org/pss/1936674

Giladi, I. (2006). Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory. Oikos, 112 (3), 481-92 DOI: 10.1111/j.0030-1299.2006.14258.x

Kozak, K., Weisrock, D., & Larson, A. (2006). Rapid lineage accumulation in a non-adaptive radiation: phylogenetic analysis of diversification rates in eastern North American woodland salamanders (Plethodontidae: Plethodon). Proc. R. Soc. B, 273 (1586), 539-46 DOI: 10.1098/rspb.2005.3326

Lengyel, S., Gove, A., Latimer, A., Majer, J., & Dunn, R. (2009). Ants sow the seeds of global diversification in flowering plants. PLoS ONE, 4 (5) DOI: 10.1371/journal.pone.0005480

Moyle, R., Filardi, C., Smith, C., & Diamond, J. (2009). Explosive Pleistocene diversification and hemispheric expansion of a “great speciator.” Proc. Nat. Acad. Sci. USA, 106 (6), 1863-8 DOI: 10.1073/pnas.0809861105