Released from predators, guppies reshape themselves—and their environment

A (domestic) male guppy. Photo by gartenfreuden.

ResearchBlogging.orgConsider a population of guppies living in the Aripo River in Trinidad. They have a happy existence, as far as guppies can be happy, but their lives are shaped by the constant threat of larger, predatory fish. The river runs clear over a colorful gravel bed, and guppies who stand out against that background are eaten quickly. Even guppies whose coloration helps them blend in have to be ready to make a break for it if a predator shows up. All in all, a guppy’s chances of surviving to mate depends most on its ability to hide from bigger fish, and to swim quickly when it can’t hide.

Then one fine day a biologist comes along, scoops up a couple hundred guppies, and moves them to a pool in a tributary of the river. The pool is separated from the mainstream by a series of waterfalls, so larger fish can’t swim up—the guppies are now free from their most dangerous predators. They can be fruitful and multiply. In this new habitat, camouflage and evasive maneuvers don’t matter so much. What does matter is finding enough food to make some babies in the midst of a whole bunch of other guppies who are also not particularly worried about predators.

John Endler started the experiment I’ve just described back in 1976 to see whether guppies’ coloration helps them hide from predators [PDF]. The guppies he moved to a predator-free stream have continued to evolve, though, and three decades later, new studies are showing how release from predators changed the guppies—and how those changed guppies could be changing the living community around them.

Since the 1976 introduction, Endler and other biologists have tracked the Aripo River guppies’ response to the change in natural selection he created. Release from predators is considered one of the classic sources of ecological opportunity that can free a population to evolve new traits and behaviors, and explore new ways of making a living. At the same time, a sudden lack of predators means that competition within the population can become stronger.

Points of measurement for guppy body and head shape, illustrated on a stained specimen. Image from Palkovacs et al, fig. 1.

In one study just published by PLoS ONE, Eric Palkovacs and two colleagues compared the body shape of guppies from the experimental population with guppies from the source stream. (Endler had noted changes in body shape along with changes in coloration in his original paper.) First, Palkovacs and his coauthors gauged how rapidly female guppies taken from each site snapped up standardized food. Then they killed the test fish, treated them with stain, and measured their body and head shape. Fish from the site with lower predation ate faster, and they had bigger mouths and deeper bodies than fish from the site with more predators.

Palkovacs and his coauthors also observed that the guppy populations at the experimental site were denser—without predators thinning them out, the fish are probably most limited by their food supply. A study published last year in PNAS suggests that this denser guppy population might reshape its own environment. The paper’s authors created artificial ponds stocked with algae and small invertebrates, then introduced guppies from the high-predation source site or from the low-predation experimental site. They also controlled for the differences in guppy population density associated with predator pressure, maintaining the fish at either the high density observed with low predation, or the lower density observed with high predation.

Where the guppies came from made a significant difference in the artificial ecosystems, and these differences were in some cases exaggerated by the increased population density caused by predator release. Guppies from the “released” site ate less selectively than guppies from the site experiencing higher predation, who favored invertebrates over algae. As a result, guppies from the released site were associated with less algae growth, and higher invertebrate population density. Probably because they ate more plant matter, guppies from the released site also excreted less nitrogen, reducing the nutrient’s availability for plant growth.

These results echo a study I discussed last year, which used a very similar approach to show that speciating sticklebacks can change their environment. It’s another reminder that evolutionary change can feed back to change the environmental conditions that prompted change in the first place—that natural selection operates in the midst of continuous change.


Bassar, R., Marshall, M., Lopez-Sepulcre, A., Zandona, E., Auer, S., Travis, J., Pringle, C., Flecker, A., Thomas, S., Fraser, D., & Reznick, D. (2010). Local adaptation in Trinidadian guppies alters ecosystem processes. Proc. Nat. Acad. Sciences USA, 107 (8), 3616-21 DOI: 10.1073/pnas.0908023107

Endler, J. (1980). Natural selection on color patterns in Poecilia reticulata. Evolution, 34 (1), 76-91 DOI: 10.2307/2408316

Palkovacs, E., Wasserman, B., & Kinnison, M. (2011). Eco-evolutionary trophic dynamics: Loss of top predators drives trophic evolution and ecology of prey. PLoS ONE, 6 (4) DOI: 10.1371/journal.pone.0018879

On competition, ecological opportunity, and Sahney et al.

ResearchBlogging.orgThere’s already been a lot of blogospheric discussion of the BBC’s recent declaration that “Darwin may have been wrong” based on a recently-published paleontology paper. I hadn’t paid it much attention, because while sloppy science journalism irritates me, it’s not quite in my wheelhouse, expertise-wise. Then I actually got around to reading the paper, and it turns out that it’s directly related to some of my own work—and the conclusion that led to the sensationalistic sub-headline doesn’t make any sense.

Coauthors Sahney, Benton, and Ferry analyze the fossil record of four-limbed vertebrates—tetrapods—to show that in general, as more species evolve, they also evolve to fill a wider variety of ecological roles [$a]. Ecological roles are here defined by combinations of body size, diet, and habitat. (Sahney et al estimate there are 207 such combinations possible, though only 75 are “occupied.”) That’s a straightforward and mostly unsurprising result—the number of tetrapod species increases as tetrapods evolve new ways to make a living. But then we get to the conclusions of the paper, and things get weird.

Sahney et al. conclude that because diversification is associated with finding unoccupied ecological roles, competition is mostly unimportant in the diversification of tetrapods: “Given the unrestricted access tetrapods have to ecospace, perhaps there is little need for competitive interactions to shape diversification.” In other words, if diversification happens by finding ways to make a living that aren’t already occupied, competition isn’t important.

Except that the very reason species diversify following an ecological opportunity like the development of a new ecological role is the lack of competition the new role provides. As my coauthors and I documented in a recently published literature review, competition shapes the kind of diversification documented by Sahney et al. in two ways: first, by its absence following the evolution of a new lifestyle; then in spurring an adaptive radiation as new species evolve to partition up the newly-available “ecospace.”

What makes this doubly odd is that Sahney et al. refer to another kind of ecological opportunity, the extinction of competitors, as a good example of competition-driven diversification. But a central insight of the literature on ecological opportunity is that diversifying because a whole bunch of ecological roles have just opened up is not fundamentally different from diversifying after a new mutation makes a never-before-seen ecological role possible. Think of it like starting a new business: to avoid competition, you could either sell an existing product in a place where no one else sells that product, or you can invent a product no one else offers. Both approaches give you a market all to yourself, and both are defined by competition.

It’s hard for me to understand why Sahney et al. don’t make this conceptual connection—which, for what it’s worth, has its roots in The Origin of Species.


Sahney, S., Benton, M., & Ferry, P. (2010). Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biology Letters, 6 (4), 544-7 DOI: 10.1098/rsbl.2009.1024

Yoder, J.B., Des Roches, S., Eastman, J.M., Gentry, L., Godsoe, W.K.W., Hagey, T., Jochimsen, D., Oswald, B.P., Robertson, J., Sarver, B.A.J., Schenk, J.J., Spear, S.F., & Harmon, L.J. (2010). Ecological opportunity and the origin of adaptive radiations Journal of Evolutionary Biology, 23 (8), 1581-96 DOI: 10.1111/j.1420-9101.2010.02029.x

Shrikes take their cues from the competition

ResearchBlogging.orgOver evolutionary time, the easiest way to deal with a competitor is to do something different – if your competitor eats big seeds, say, it may be easier to start eating small seeds than to fight for the big ones. This idea goes all back to the Origin, wherein Darwin proposed that competition drives evolutionary diversification, with living things dividing up available resources into ever-finer slices as they scramble for shares:

Lighten any check, mitigate the destruction [of offspring] ever so little, and the number of the species will almost instantaneously increase to any amount. The face of Nature may be compared to a yielding surface, with ten thousand sharp wedges packed close together and driven inwards by incessant blows, sometimes one wedge being struck, and then another with greater force.

But what if competition can sometimes make competitors more like each other? A new study, published through PLoS ONE this week, shows that red-backed shrikes prefer to set up hunting territories in places where their competitors have already been hunting.

Photo by phenolog.

Shrikes are cute but vicious predators – they capture small prey and spear them on thorns or twigs for storage, or to indicate to a prospective mate what great hunters they are. Red-backed shrikes migrate from Africa to Eastern Europe for the summer mating season. When they arrive, male red-backed shrikes must establish a hunting territory with a nesting site, but they have to contend with the established territories of great gray shrikes, which live in the same area year-round, and eat the same kind of prey.

You might expect, then, that red-backed shrikes would establish nest sites well away from the impaled victims of great gray shrikes. In fact, as the paper’s authors show, red-backed shrikes are more likely to nest near great gray shrike caches. They don’t raid the competitors’ larders, but, the authors argue, understand the presence of a great gray shrike’s cache to mean there is plenty of prey nearby.

This could mean a number of things: perhaps great gray shrikes and red-backed shrikes prey on critters that are so abundant, it’s arguable that they’re not really competing. If that’s the case, it makes plenty of sense for red-backed shrikes to use great gray shrike caches as cues to find particularly good hunting grounds. Alternatively, red-backed shrikes settling near great gray shrike caches might shift their prey preferences to avoid competition – the presence of one type of prey may very well correlate with the abundance of many other types, so that the great gray shrike caches are only indirect indicators of prey abundance. Unfortunately, the current paper has no data comparing prey preferences of red-backed shrikes nesting nearby and away from great gray shrike caches, so there’s no way to test this hypothesis.

Still, this observation has significant implications for the way we think about species interactions across evolutionary time. If competitors can be drawn together as well as driven apart, maybe competition doesn’t contribute to diversification as much as we think it does.


M. Hromada, M. Antczak, T.J. Valone, P. Tryjanowski (2008). Settling decisions and heterospecific social information use in shrikes PLoS ONE, 3 (12) DOI: 10.1371/journal.pone.0003930