Nothing in Biology Makes Sense: A flower is an evolutionary compromise

Pollination IMG_4730D Welcome, pollinators! But, um, everyone else can just stay out, okay? Photo by Yeoh Thean Kheng.

Over at Nothing in Biology Makes Sense!, I’ve written about a neat study of the tropical vine Dalechampia scandens, which has to solve an evolutionary puzzle that confronts most flowering plants:

But there’s a downside to making a big, showy display to attract pollinators—you might also attract visitors who have less helpful intentions than gathering up some pollen and moving on to the next flower. Showy flowers might attract animals that steal the rewards offered to pollinators—or they might attract animals that eat the flowers themselves, or the developing seeds created by pollination.

To see how a team of biologists directly measured this evolutionary compromise (spoiler: it involves counting pollen grains with a hand lens) go read the whole thing.◼

The Molecular Ecologist: Triangulating the targets of natural selection

torridon view Photo by paul.mcgreevy.

At The Molecular Ecologist, guest contributor K.E. Lotterhos discusses an important consideration in designing studies that “scan” the genome for regions experiencing natural selection—to be truly informative, they must “triangulate” using independent data:

Let’s say a number of individuals were collected from heterogeneous environments on the landscape. Some SNPs were significant both in an FST outlier analysis and a [genetic-environement association]. Would we consider these SNPs to have two independent sources of evidence?

NO, because the two tests were performed on the same sets of individuals.

What counts as “independent” in this context? I think that’s still something of an open question—but go read the whole thing and se what you think!◼

Nothing in Biology Makes Sense: Stalking the wild holobiont

figure made from dishes containing images of microbes Photo by Pickersgill Reef.

Over at Nothing in Biology Makes Sense!, Sarah Hird introduces us to the concept of the holobiont and its hologenome:

Most evolutionary biologists probably consider the individual as the fundamental unit of natural selection. We think about the genes of one mother or one father being passed on to one descendant. But is this view too constrained? The “hologenome” is all the genomes that belong to the “holobiont” – an organism and all its microbes.

Would natural selection be better understood as acting on organisms together with all the microbes they host? Go read the whole thing and see what you think.◼

The Molecular Ecologist: From postdoc to faculty

Metamorphosis: Free as a Butterfly and Ready to Fly The postdoc-to-faculty metamorphosis: mysterious, magical, sometimes kind of gross. Photo by chekabuje .

Over at The Molecular Ecologist this week, K. E. Lotterhos has been writing about making the jump from a postdoctoral research position to being an actual, honest-to-gods faculty member. It’s in two parts, one about finding the faculty job and the other about getting started once you land it.

After I took the job, everyone told me how relaxed I must be to have a job lined up. Relaxed? There has been a substantial amount of busy work (ramping up the conference schedule, fielding emails and scheduling skype conversations with potential graduate students, dealing with lab renovations…). Plus, I’m still trying to work on my postdoc research and get it published, so more people will know who I am and so my grants will be more competitive. Everything I do now has a sense of urgency.

Congratulations! You have a job. Now get to work! But seriously, this all covers the career stage I’m hoping to enter myself, any year now. It’s definitely worthwhile reading, and bookmarking, the whole thing.◼

Nothing in Biology Makes Sense: A fossil swift, and the origin of hummingbird flight

Hummingbird Backside Photo by Extra Medium.

Over at Nothing in Biology Makes Sense, guest contributor Jessica Oswald explains how a new fossil of a bird that lived 52 million years ago helps explain the origins of some of nature’s greatest aerial acrobats:

Swifts are able to reach the highest speeds during level flight (Chantler 1999) and hummingbirds are well known for their hovering abilities and their sideways and backward flight. Swifts and hummingbirds, while sharing the same wing bone characteristics, have different lengths of flight feathers, resulting in different wing shapes across the group, which allows them to perform their different aerial feats. Hummingbirds have shorter wings relative to their body size compared to swifts, resulting in their hovering abilities. These different wing shapes are well suited for their modern functions, but we have almost no fossils from this group, so we don’t know how the wing shapes diverged, or anything about the ecology of ancient species in this lineage.

To learn what the common ancestor of swifts and hummingbirds (or, rather, one of its early descendants) looked like, go read the whole thing.◼

Nothing in Biology Makes Sense: Tropical trees, getting by with a little help from their mutualistic ants

This week at Nothing in Biology Makes Sense! I’m discussing a nifty new study that suggests interacting species can sometimes tolerate stressful environments by helping each other out:

This was the perspective of Peter Kropotkin, a Russian prince and political anarchist who studied the wildlife of Siberia while working as an agent of the Czar’s government. In the harsh conditions of the Siberian winter, Kropotkin reported finding not a bitter struggle over scarce resources, but what he called “Mutual Aid” among species, as well as in the human settlements that managed to eke out a living.

Something like what Kropotkin described is documented in a new paper by Elizabeth Pringle and colleagues. Examining a protection mutualism between ants and the tropical Central American tree Cordia alliodora, Pringle et al. found that drier, more stressful environments supported more investment in the mutualism.

To learn how ants can help a tree deal with drier climates—no, it doesn’t involve little tiny bucket brigades—you’ll have to go read the whole thing.◼

Queer in STEM on Autostraddle

My collaborator on the Queer in STEM project and I are flattered to be the subjects of an entire profile over at Autostraddle, part of the great series on “Queered Science” by Vivian Underhill, who also gave us a nice nod in an article for Bitch Magazine. The Autostraddle article gets into the genesis of the project:

Allison had done some work on queer issues previously, on “discrimination in school settings, transnational queer migration, and identity development.” So Jeremy asked Allison what she thought about the idea of a survey of a nation-wide sample of queer scientists – as a social scientist, did she think results like that would be publishable? “I responded, ‘are you asking me to teach you about doing research with human subjects? Sure!'”

There’s even an artist’s rendering of us hard at work in the field:

You should definitely go read the whole thing.◼

Nothing in Biology Makes Sense: Incubation temperature tailors these skinks to their habitat

Closed-litter Rainbow-skink (Carlia longipes) Carlia longipes. Photo by berniedup.

This week at Nothing in Biology Makes Sense, there’s a post from yours truly about a curious case of developmental flexibility in some Australian lizards. It seems that rainbow skinks (Carlia longipes) develop bigger bodies and longer legs if they’re incubated in cooler nests—and those developmental changes provide an advantage in the rocky habitats where nest temperatures are typically cooler:

Life is risky for a newly hatched lizard. You have to make your way in a habitat you’ve never seen before, full of all sorts of larger animals that think you’d make a decent snack, if maybe not a full meal. Wouldn’t it be nice if you could’ve been preparing for the conditions you’ll meet out there even before you crack through that shell?

Well, for one species of skinks, it looks like this may be exactly what happens. A recent paper in The American Naturalist makes the case that rainbow skinks (Carlia longipes) develop in their eggs to match the habitat conditions around their nest—based on the temperature of the nest.

This is a classic case of phenotypic plasticity, in which development responds to the environment to provide a better fit—but in Carlia longipes, plasticity goes beyond growing longer legs. To find out what’s up with these skinks, go read the whole thing.◼

Nothing in Biology Makes Sense: Circumcision and microbial ecology

Banana Peel What? Photo by photograφ.

Over at Nothing in Biology Makes Sense!, Sarah Hird describes a new study of what happens to the microbial community of the human penis when you make a … let’s say a certain change to its environment?

They begin by sampling the penile microbiota of 156 uncircumcised men. Approximately half of the men are then circumcised and all subjects are resampled after one year (presumably enough time that behavior is unaffected by the procedure).

Yeah, it’s maybe not surprising that circumcision would change what kinds of bacteria hang out in the region formerly covered by the foreskin. But apparently that change may contribute to the reduced rate of HIV transmission associated with circumcision. To find out how, go read the whole thing.◼

The Molecular Ecologist: Is Homo sapiens a model organism?

New York City Photo by Bikoy.

Over at The Molecular Ecologist, guest contributor Jacob Tennessan suggests that for those of us who study the genetics of natural populations, the ultimate “model organism” may be … us.

Thus, the field of human population genetics has always been a step or two ahead of the molecular ecology of wildlife. Common techniques like mitochondrial- or microsatellite-based phylogeography analyses were pioneered with data from humans. Research into human molecular ecology has yielded countless fascinating stories that provide a baseline for what to expect when examining other taxa. Some are well-known textbook examples, like the sickle-cell hemoglobin balanced polymorphism that conveys resistance to malaria, or the human global diaspora reflected in sequence diversity that traces back to “mitochondrial Eve” and “Y-chromosome Adam.”

Does that make Homo sapiens a “model organism” in the same sense as fruitflies and Caenorhabditis elegans, or more of a proving ground for new molecular methods? Go read the whole thing, and tell us what you think in the comments.◼