The loss of animal pollinators poses a potentially big problem for plants. However, many plant species that rely on animals to move pollen from anther to stigma have the capacity to make due if that service goes undone—and, as a new study released online early by the journal Evolution demonstrates, such plants can rapidly evolve to do without pollinators [$a] if they must.
The paper’s authors, Sarah Bodbyl Roels and John Kelly, demonstrate this using a simple greenhouse experiment with the monkeyflower Mimulus guttatus, a wildflower native to western North America, and a member of a genus rapidly developing into a major model system for studying the evolution of ecological isolation and floral evolution.
Mimulus species vary in their reliance on animal pollinators—some grow minimalistic flowers, with the anther so close to the stigma that pollen transfers without any assistance. In natural populations, M. guttatus is usually pollinated by bees, but individual plants vary in the distance between anther and stigma, and this variation has a genetic basis. So a population of M. guttatus deprived of pollinators would have the raw material to evolve a solution—natural selection would favor plants that are better able to self-pollinate. As the population evolved to be more self-fertilizing, it might also evolve to look more like self-pollinating Mimulus species, losing the bright petals that attract pollinators.
To see whether this could actually happen, Bobdyl Roels and Kelly challenged an experimental population of Mimulus guttatus to do without pollinators, and tracked its response.
The authors raised seeds derived from a natural wild population of Mimulus guttatus in greenhouses under two trial conditions: control populations were provided with hives of bumblebees to pollinate them when their flowers were ready for servicing; and experimental populations were left to produce what seed they could without pollinators. The authors collected the seeds produced by each population, and planted them to form the next generation.
Early on in the experiment, the experimental populations deprived of pollinators fared badly. Without pollinators, the average plant produced two seeds or fewer by the end of the generation, compared to eight or ten seeds per plant in the population provided with bees. By the fifth generation, however, this was starting to improve—plants in both populations without pollinators were producing more seeds, and one of the two experimental populations produced nearly as many seeds as the control plants.
Examining the traits of plants produced by this final generation (actually, the grand-offspring of the fifth generation, to control for effects of inbreeding), the authors found that the average distance between the pollen-producing anther and the pollen-receiving stigma had shrunk significantly in plants from the experimental population. Across all the treatments, plants with a shorter distance between stigma and anther produced more self-pollinated seeds. There was no evolved change in other floral measurements, however—plants in the no-pollinators treatment had petals as big and showy as plants evolved with bumble bees.
In a natural population of Mimulus guttatus, the drop-off in seed production created by loss of pollinators should have much the same effect as in this experiment, creating a strong selective advantage for individual plants that can make more seeds on their own. The fact that the experimental plants did not evolve reduced petals could mean that in the cushy conditions of a greenhouse, there wasn’t much need to stop spending resources making showy flowers. Or maybe, when the major source of natural selection is the need to make any seeds at all, selection to save resources on flower production is relatively weak and correspondingly slow-acting.
As the authors point out, one of many changes humans are making to natural communities around the world is to disrupt pollination relationships. In a sense, experiments like theirs are being carried out worldwide, on hundreds of plant species—and each species will adapt, or fail to adapt, in its own way.
Reference
Bodbyl Roels, S., & Kelly, J. (2011). Rapid evolution caused by pollinator loss in Mimulus guttatus. Evolution DOI: 10.1111/j.1558-5646.2011.01326.x