Are mutualists monogamists, while antagonists play the field?

ResearchBlogging.orgTwo of the most diverse groups of living things on Earth are flowering plants and the insects that make their living from flowering plants. Biologists have long thought that the almost incessant, intimate interactions between plants and plant-eating insects might be the evolutionary cause of each group’s spectacular diversity. On a smaller scale, this means that we’re interested in the reasons that specific insects and plants interact in the first place—what evolutionary trails leads one insect species to specialize on a single host while others eat pretty much any plant they land on.

A new study of one group of plant-eating insects suggests that the kind of interaction between insects and their host plants also determines how specific those interactions are. Examining a group of moths that, like the yucca moths I study, pollinate their host plant and then eat some of its seeds, the authors of the new study find that related, non-pollinating moths use more host plant species than the pollinators [$a]. I think it makes a particularly nice companion piece to my post about the evolutionary origins of yucca moths, because it provides an example of one or two other things biologists can deduce from phylogenies—and, as we’ll see, some things they can’t.

Epicephala: like a yucca moth without the snappy name

The moths in question are in the genus Epicephala, and they have an obligate pollination relationship with trees in the genus Glochidion, a diverse group of plant species found in southern Asia. That is, female moths carry pollen between Glochidion flowers in special mouthparts, deliberately apply pollen to the flower, and then lay eggs in the flower so that, when it develops into a fruit, her larvae can eat some of the seeds inside. Epicephala species are highly specialized, with most species only using one species of Glochidion [$a]. That’s a higher degree of specialization than what’s seen in yucca moths, in fact.

Pollinating moths (genus Ephicephala, left) use fewer host plant species than related non-pollinating moths (genus Caloptilia, right). Photos by CharlesLam and Bettaman.

The family of which Epicephala is a member happens to include other moths that interact with Glochidion, but only as herbivores: species in the genera Caloptilia and Diphtheroptila, whose larvae all eat Glochidion leaves. Do these antagonistic moths use more, or fewer, species of the host plant than the mutualistic Epicephala? Kawakita and his coauthors set out to answer that question by reconstructing the phylogenies of Caloptilia and Diphtheroptila.

Finding species in evolutionary trees

Most biologists agree that two groups of organisms are separate species if there is no gene flow between them. A consequence of genetic isolation between species is that, if they’re isolated long enough, they become monophyletic within phylogenies. That is, all the individuals within each species share a common ancestor that is not shared with any other species. You can see this by contrasting two monophyletic species (on the left in the figure below) with two groups that turn out to be paraphyletic—some individuals of the red species are more closely related to individuals of the blue species than to other individuals of their own species.

Monophyletic and paraphyletic groupings. Image by jby.

The reasoning behind this is a bit subtle. Paraphyletic groups might still be separate species—they just haven’t been isolated long enough to become monophyletic. As a good example, I’m a coauthor on a recent study that did this kind of analysis on non-pollinating “bogus” yucca moths that use three different yucca species. In that case, the moths were paraphyletic with respect to which yucca species they used, but more analysis showed that there is currently very little gene flow between moths using different hosts [PDF].

In the case of the Glochidion-using Caloptilia and Diphtheroptila, Kawakita et al. found something more complicated. Each genus broke up into several monophyletic groupings, or clades of genetically similar individuals—but in most cases each clade included moths collected from at least two different Glochidion species. Kawakita et al. note that the clades also correspond to differences in the moths’ wing coloration, larval feeding behavior, and genitalia, and conclude that each clade is a different species. That would mean that the two antagonist genera tend to use multiple host plants.

Interesting question, but is this the way to answer it?

Except I’m not sure I buy this usage of phylogenies to define species. Kawakita et al. have shown that within the clades they call species, the individuals all have very similar genetics, but only for the two commonly-used genetic markers from which the phylogenies are reconstructed. It’s not impossible that within each clade the moths might be adapted to individual host plant species, and reproductively isolated by that adaptation—and this could have happened recently enough that not many genetic differences would have built up in the two markers.

To really answer the question Kawakita et al. have posed would require a study of each clade in the two antagonist genera at a much finer scale. The question of how specialized Caloptilia and Diphtheroptila are hinges on how many species are in each genus, and that’s better addressed by examining population genetics, not ancient relationships among these genera.

Reference

Drummond, C., Xue, H., Yoder, J., & Pellmyr, O. (2009). Host-associated divergence and incipient speciation in the yucca moth Prodoxus coloradensis (Lepidoptera: Prodoxidae) on three species of host plants. Heredity, 105 (2), 183-96 DOI: 10.1038/hdy.2009.154

Kawakita, A., & Kato, M. (2006). Assessment of the diversity and species specificity of the mutualistic association between Epicephala moths and Glochidion trees. Molecular Ecology, 15 (12), 3567-81 DOI: 10.1111/j.1365-294X.2006.03037.x

Kawakita, A., Okamoto, T., Goto, R., & Kato, M. (2010). Mutualism favours higher host specificity than does antagonism in plant-herbivore interaction. Proc. Royal Soc. B, 277 (1695), 2765-74 DOI: 10.1098/rspb.2010.0355