The “Big Four,” part I: Natural selection

This post is the first in a special series about four fundamental forces in evolution: natural selection, mutation, genetic drift, and migration.

This post was chosen as an Editor's Selection for ResearchBlogging.orgAmong non-biologists, the best-known of the Big Four forces of evolution is almost certainly natural selection. We’ve all heard the catchphrase “survival of the fittest,” and that’s a pretty good, if reductive, summing up of the principle. In more precise terms, here’s how natural selection works:

  • Natural populations of living things vary. Deer vary in how fast they can run, plants vary in how much drought they can tolerate, birds vary in their ability to catch prey or collect seeds—no two critters of the same species are exactly alike.
  • Some of those variable traits determine how many offspring living things have. How well you avoid predators, fight off disease, and collect food all determine how many babies you can make.
  • Many of those variable traits are heritable, passed on from parents to offspring. Faster deer usually have faster fauns; drought-tolerant plants make drought-tolerant seeds.

With these three conditions in place, natural selection occurs: heritable traits that help make more babies become more common. That is, if you have a trait that lets you support more offspring than your neighbor, you’ll have more children than your neighbor, and they’ll have more children than your neighbor’s children, and so on.

Fitness-versus-phenotype regressions for directional, stabilizing, and disruptive selection. Graphic by jby.

Measuring selection

Put this way, natural selection is simply a relationship between fitness, the number of offspring an organism can produce (often reported in comparison to the rest of the local population), and phenotype, the value of one or more traits of that organism (wing length, running speed, number of flowers produced, &c). Biologists can measure selection in natural populations by estimating this relationship between fitness (or a proxy for fitness, like growth rate), and phenotypes. Such an analysis should produce something like the regression graphs to the right, in which the relationship might be directional, with greater- (or smaller-) than-average phenotypes having greater fitness; stabilizing, with the average phenotype value having greater fitness; or disruptive, with extreme phenotype values having greater fitness. The slope of the line, or the shape of the curve, is a measure of the strength of natural selection [PDF] on an organism’s phenotype. This approach to measuring selection has been widely applied, and in 2001 a group of biologists led by Joel Kingsolver collected more than 2,500 estimates of the strength of natural selection [PDF].

How strong is selection?

Kingsolver et al. found that selection was usually surprisingly weak. Studies with the largest sample sizes, and the most statistical power to detect selection, mostly found directional selection strength (that is, the slope of the fitness-phenotype regression) less than 0.1, and the strength of stabilizing or disruptive selection was similarly low. Does this mean selection doesn’t matter in the short-term evolution of natural populations?

Probably not. The average selection strength estimates from the Kingsolver et al. dataset are actually stronger than selection strength assumed in most mathematical models of evolution. Furthermore, the collected estimates of selection had “long tailed” distributions—a small number of studies found quite strong selection, up to ten times as strong as the average. So maybe rare but strong bouts of selection have disproportionate impact over the long term.

Peter and Rosemary Grant have documented decades of shifting natural selection on Darwin’s finches (Geospiza spp.). Photo by Igooch.

Taking the finch by the beak

Part of the problem with assessing selection in nature is that most datasets measure selection over just one or a few years. One exception is the case of Darwin’s finches in the Galapagos Islands. The Galapagos offers a wide variety of habitat types, and experiences substantial year-to-year environmental variation—a landscape that should exert all sorts of natural selection on its occupants. Peter and Rosemary Grant have studied Galapagos finches for decades now, and found that selection is continuously at work on these unassuming birds. (The Grants’ book How and Why Species Multiply sums up their research program for a lay audience.)

Much of the Grants’ work has focused on the finches’ beaks, which largely determine what food the birds can eat. The distribution of seed sizes available on different Galapagos islands strongly predicts [PDF] the size of finches’ beaks on those islands. In 1989, the Grants published estimates of selection on beak size in the finch species Geospiza conirostris following a drastic wet-to-dry climactic shift that radically changed what foods were available to the finches. They found strong selection [$a], with fitness-phenotype regression slopes as high as 0.37. What’s more, the direction of selection changed dramatically from a very wet year to the dry year immediately afterward, as the finches were forced to move from feeding on small seeds and arthropods—which gave the advantage to shorter beaks—to hard-to-crack seeds, which required deep beaks.

The Grants’ longer-term study of selection on Galapagos finches confirms this image of selection swinging back and forth unpredictably [PDF]. From 1972 to 2001, they tracked populations of the finch species G. scandens and G. fortis, and saw both more gradual long-term changes in the finches’ body size and beak measurements as well as sudden sharp shifts. These changes continually altered the ability of the two species to hybridize, so that some years they were more reproductively isolated than others—and conditions in any one year were poor indicators of what would be going on five, ten, or twenty years later.

So when does selection matter?

The Grants’ study makes natural selection look as shifting and impermanent as the wind. How can it shape patterns of evolution over millions of years, then? One possibility is that trends may emerge over longer periods of time, as wobbly selection moves species in new directions in a drunkard’s walk, with two steps forward, then one step back, then four steps forward. Another is that lasting trends only occur when speciation intervenes to lock in fleeting changes due to variable natural selection [$a]. Much also depends on how selection interacts with mutation, genetic drift, and migration, as I’ll discuss in the rest of this series.

And here’s a shameless plug for a t-shirt. Photo by jby.


Futuyma, D. (1987). On the role of species in anagenesis. The American Naturalist, 130 (3), 465-73 DOI: 10.1086/284724

Grant, B.R., & Grant, P.R. (1989). Natural selection in a population of Darwin’s finches. The American Naturalist, 133 (3), 377-93 DOI: 10.1086/284924

Grant, P.R., & Grant, B.R. (2002). Unpredictable evolution in a 30-Year study of Darwin’s finches. Science, 296 (5568), 707-11 DOI: 10.1126/science.1070315

Grant, P.R. and B.R. Grant. (2008) How and Why Species Mutliply: The Radiation of Darwin’s Finches. Princeton University Press. Google Books.

Kingsolver, J., Hoekstra, H., Hoekstra, J., Berrigan, D., Vignieri, S., Hill, C., Hoang, A., Gibert, P., & Beerli, P. (2001). The Strength of phenotypic selection in natural populations. The American Naturalist, 157 (3), 245-261 DOI: 10.1086/319193

Lande, R. (1976). Natural selection and random genetic drift in phenotypic evolution. Evolution, 30 (2), 314-34 DOI: 10.2307/2407703

Johnson, T., & Barton, N. (2005). Theoretical models of selection and mutation on quantitative traits. Phil. Trans. R. Soc. B, 360 (1459), 1411-25 DOI: 10.1098/rstb.2005.1667

Schluter, D., & Grant, P. (1984). Determinants of morphological patterns in communities of Darwin’s finches. The American Naturalist, 123 (2), 175-96 DOI: 10.1086/284196

6 thoughts on “The “Big Four,” part I: Natural selection

  1. I would imagine that with Darwin’s Finches, although the climate is changing from one year to the next, over a longer time frame (centuries) it is likely to be relatively constant and so the finches typically remain locked into their respective morphologies. I could be wrong.

    But I would be interested in seeing the strength of natural selection when the environment significantly changes permanently. The best example I can think of would be when humans significantly change the abiotic make up of an environment. Then you would expect to see rapid directional changes via natural selection I would imagine. I would suspect that changes in habitat through environmental changes probably was one of the major drivers of directional natural selection in the past. This is all me just philosophizing though so I could well be wrong.

  2. That’s a great point, Daniel; the “long term” study of Darwin’s finches is still incredibly brief on a time scale of millions of years. This is the trouble with measuring natural selection in general. What we measure over time scales we can work with may not tell us what’s going on over evolutionary time. (I should’ve cited Gould’s “paradox of the visibly irrelevant” above, perhaps.)

  3. You failed to mention that there is a struggle for existence, that for every species on the planet there are more offspring produced than the number capable of surviving and producing offspring. This is the selective pressure, the predator, environment, and other conditions are the manifestation of selection. It is worth editing this point into your column- it is one of the four main postulates of Darwin’s natural selection theory.

    I also notice that you did not reference Darwin’s Origin of Species, if you read this book surely you would have recognized your error.

  4. Loren, I deliberately avoided discussing The Origin because I wanted to focus on the mechanics of natural selection rather than the history of the idea, and because, really, it seems like evolution-flavored blogs are always invoking Darwin and the Origin. (I certainly do more than my share of it.)

    The “struggle for existence” was certainly an important image for Darwin’s (and Wallace’s) development of natural selection as an explanation for descent with modification, but it’s not a phrase used heavily by evolutionary biologists these days—and I think you’ll find, if you think about it, that it’s entailed by the second bullet point in my outline of how selection works. If fitness is defined as how many children you have relative to your neighbors, then a struggle for existence is implied. In any event, selection doesn’t require that a population be at carrying capacity in order to operate.

  5. The Soay Sheep study is a good one – selection for phenotypes that survive wet winter storms is strong and persistent, and they have been able to track it at the individual level for over a half century.

  6. Ooh, that’s a good one, John. I should’ve thought of the Soay Sheep—that’s maybe less of a “flagship,” than the finches (which might be a good thing) and another great long-term study.

Comments are closed.