Cost of killing nest-mates offset by benefits of killing nest-mates

ResearchBlogging.orgAmong birds, brood parasites are the ultimate freeloaders — species like the common cuckoo and the brown-headed cowbird lay their eggs in other birds’ nests, leaving the host to raise the parasite chicks at the expense of its own. But while brood parasitism is easy on the parents, it isn’t so easy on their chicks, as a study recently published in PLoS ONE suggests.


A reed warbler feeds a common cuckoo chick. Photo from WikiMedia Commons.

A brood parasitic chick faces two challenges. The first is to avoid being recognized by its adoptive parents and ejected from the nest; the second is to win parental attention in competition with their adoptive nest-mates. The first challenge may be partially met by the evolution of eggshells that match host eggshells; and brood parasite parents may also help by keeping watch on the host nest so they can punsish hosts who eject introduced eggs. (This punishment behavior has been described as an “avian mafia [$-a].”)

In competition with their adoptive nest-mates, though, parasitic chicks are on their own. If the host’s own eggs hatch, the host has more mouths to feed and less time to spend on the parasitic chick. On the other hand, a brood parasitic mother can’t kick out the host’s eggs at the time she leaves her own egg with the host, because the host may abandon a nest that contains only a single unfamiliar-looking egg. This leaves it to freshly-hatched brood parasite chicks to do the heavy lifting involved in ejecting their host’s eggs themselves.


A common cuckoo chick pushes one of its host’s eggs out of the nest. Detail of figure 1 from Anderson et al. (2009).

Egg eviction looks like hard work — the chicks attempt it while they’re not much bigger than the eggs. Anderson et al. investigated the cost of all this adoptive-siblicidal effort by manipulating reed warbler nests that had been parasitized by common cuckoos,* taking away the hosts’ eggs in experimental nests, and comparing the growth of cuckoo chicks in those nests to that of chicks in unmanipulated nests, who had to do the evicting themselves.

They found that there is a cost to eviction effort: during the period of development when they would be doing all they could to push eggs out of the nest, cuckoo chicks grew faster when they didn’t have eggs to push. But they didn’t grow much faster, and by the time they were ready to leave the nest, the advantage had disappeared. Anderson et al. take this to mean that the cost of eviction is “recoverable” through the benefits of increased parental attention later on. I would add that it points out how important your choice of time frame can be when investigating how traits or behaviors affect organisms’ evolutionary fitness — sometimes a cost paid at one point in development is an investment toward later benefits.

——–
*The common cuckoo is the species first known to parasitize other birds’ nests, and its name is the linguistic source of the term “cuckold.”

References

Anderson, M., Moskát, C., Bán, M., Grim, T., Cassey, P., & Hauber, M. (2009). Egg eviction imposes a recoverable cost of virulence in chicks of a brood parasite. PLoS ONE, 4 (11) DOI: 10.1371/journal.pone.0007725

Hoover, J., & Robinson, S. (2007). Retaliatory mafia behavior by a parasitic cowbird favors host acceptance of parasitic eggs. Proc. Nat. Acad. Sci. USA, 104 (11), 4479-83 DOI: 10.1073/pnas.0609710104

Lahti, D. (2005). Evolution of bird eggs in the absence of cuckoo parasitism. Proceedings of the National Academy of Sciences, 102 (50), 18057-62 DOI: 10.1073/pnas.0508930102

Soler, M., Soler, J., Martinez, J., & Moller, A. (1995). Magpie host manipulation by great spotted cuckoos: Evidence for an avian mafia? Evolution, 49 (4), 770-5 DOI: 10.2307/2410329